
R. Indu Praveena et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 4), June 2014, pp.81-87

 www.ijera.com 81 | P a g e

A Novel Approach of Pattern Detection Processor for

Multipurpose Devices

R. Indu Praveena, Bignhneswar panda, Aditya Putta
M.Tech Student (11H91D6802)

Associate Professor

Professor & HOD

Abstract
In this day and age, itinerant handsets coalesce the functionality of preset phones and PDAs. Unfortunately,

mobile handsets development system has been determined by souk demand, focusing on new features and

neglecting security. So, it is imperative to study the lying on hand face with the aim of facing the

transportable handsets threat suppression development along by way of the different techniques as well

seeing that methodologies with the intention of used to facade folks challenges and contain the mobile handsets

malwares. A TCAM-based virus-detection entry provides towering throughput, but also challenges for small

power and low cost. In this paper, an adaptively dividable equal-port BiTCAM (unifying dual and ternary

CAMs) is projected to achieve a high-throughput, low-power, and low-cost virus-detection workspace for

mobile devices. The proposed dual-port BiTCAM is realized with the dual-port AND-type match-line scheme

which is composed of dual -port active AND gates. The dual-port designs diminish power expenditure

through supplement storage efficiency owing to shared storage spaces. In totaling, the dividable BiTCAM

provides high flexibility for regularly update the virus-database. In this paper, am presenting a multi blueprint

matching algorithm with low area and less complexity. Prior to going to store patterns within database;

patterns decoding is done with an efficient approach like TCAM. together ternary and twofold combines to

form TCAM patterns. This paper is developed with an adaptively dividable dual-port BiTCAM to achieve

a high-throughput, low-power, and low-cost pattern-detection processor for multipurpose devices.

Keywords: CAMs, Patterns, PDAs, TCAM

I. INTRODUCTION
NETWORK security has always been an chief

issue. End users are vulnerable to virus attacks,

spams and Trojan horses, for example. They may

visit malicious websites or hackers may gain entry to

their computers and use them as android computers

to attack others. To ensure a secure network

environment, firewalls were first introduced

to block unauthorized Internet users from

accessing resources in a private network by means

of simply checking the sachet top (MAC

address/IP address/port number). Over the past

few years, there has been a substantial increase

in the number of malware that have been in print

for mobile devices. As per , there exist at least

31 families and 170 variants of branded mobile

malware. Statistics have shown that at least 10

Trojans are released every week. Even however it

took computer viruses twenty years to evolve,

their mobile device counterparts have evolve for

the duration of just a length of two years. To

understand the threat that is involved, we

opening present the comparison of the

environment used for PC-based and itinerant

device malware. While dealing with a mammoth

integer of virusThis method drastically reduces the

probability of creature attacked. nevertheless, attacks

such when spam, spyware, worms, viruses, and

phishing target the application sheet rather than the

arrangement layer. then traditional firewalls thumbs

down longer provide enough protection. Many

solutions, such as germ scanners, spam-mail

filters, instantaneous messaging protectors, network

shields, content filters, and peer-to-peer protector,

have been in actual actuality implement. Initially,

these solutions were position into service at the

end-user side but be likely en route for be merged

into routers/firewalls to provide profound protection.

As a result, these routers stop threats on the network

periphery along with keep them not in of corporate

Networks. In this case, the firewall router might

firstly deny some connections beginning the firewall

based on the target’s IP address and the connection

port. Then, the fire-wall router would monitor the

content of the web pages to prevent the user from

accessing any page that connects to malware links

or inappropriate content, based on content filters.

When the user wants to download a compressed

file, to ensure that the file is not infected, the

firewall router must decompress this file and

check it using anti-virus programs. In summary,

firewall routers require several time-consuming steps

RESEARCH ARTICLE OPEN ACCESS

R. Indu Praveena et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 4), June 2014, pp.81-87

 www.ijera.com 82 | P a g e

to provide a secure connection. In some gear

parallel combinational logic is applied at every one

word in the memory and a test is completed next to

the same time for coincidence with the search word.

into other cases the search word and all of the

words in the memory are shifted serially in

synchronism; a single bit of the search expression is

subsequently compared to the same bit of every

solitary of of the memory words using as loads

of single-bit coincidence circuits as there are

words in the memory. Amplifications of the

associative reminiscence technique allow for

masking the search word or requiring only a

“close” amusement as opposed to an exact

equivalent Small parallel associative memories are

used in cache memory and effective recollection

mapping applications. Cabir was developed for

mobile phones running the Symbian and Series 60

software, and using Bluetooth. The virus searches

within Bluetooth's range (about 30 meters) for

mobile phones running in discoverable mode and

sends itself, disguised as a security file, to any

vulnerable devices. The virus only becomes active

if the recipient accepts the file and then installs it.

Once installed, the virus displays the word "Caribe"

on the device's display. Each time an infected phone

is turned on, the virus launches itself and scans

the area for other devices to send itself to. The

scanning process is likely to drain the phone's

batteries. Cabir can be thought of as a hybrid

virus/worm: its mode of distribution qualifies it as a

network worm, but it requires user interaction like a

traditional virus.Since equivalent operations on

many words are expensive (in hardware), a

variety of stratagems are used on the road to

approximate associative memory operation lacking

actually carrying out the full test described here.

solitary of these uses hashing to generate a “best

speculation” for a conventional address followed by a

test of the contents of that address. A data-storage

device in which a location is identified by its

informational content rather than by names,

addresses, or relative positions, and from which the

data may be retrieved.

II. CONCEPT OF A FIREWALL

ROUTER
Network firewalls and routers can use a rule

database to decide which packets will be allowed

from one network onto another. By filtering packets

the firewalls and routers can improve security and

performance -- by excluding packets which may pose

a security risk to a network or are not relevant to it.

However, as the size of the rule list increases, it

becomes difficult to maintain and validate the rules,

and the cost of rule lookup may add significantly to

latency. Ordered binary decision diagrams (BDDs) --

a compact method of representing and manipulating

boolean expressions -- are a potential method of

representing the rules. This paper explores how

BDDs can be used to develop methods that aid

analysis of rules to validate them and changes to

them, to improve performance, and facilitate

hardware crutch up. 1 Introduction The growth of

network and internet communication creates several

challenges for network design. The first paper

published on firewall technology was in 1988, when

engineers from Digital Equipment

Corporation (DEC) developed filter systems known

as packet filter firewalls. This fairly basic system

was the first generation of what is now a highly

involved and technical internet security feature.

At AT&T Bell Labs, Bill Cheswick and Steve

Bellovin were continuing their research in packet

filtering and developed a working model for their

own company based on their original first generation

architecture. Packet filters act by inspecting the

"packets" which are transferred between computers

on the Internet. If a packet matches the packet filter's

set of filtering rules, the packet filter will drop

(silently discard) the packet or reject it (discard it,

and send "error responses" to the source). This type

of packet filtering pays no attention to whether a

packet is part of an existing stream of traffic (i.e. it

stores no information on connection "state"). Instead,

it filters each packet based only on information

contained in the packet itself (most commonly using

a combination of the packet's source and destination

address, its protocol, and, for TCP and UDP traffic,

the port number). TCP and UDP protocols constitute

most communication over the Internet, and because

TCP and UDP traffic by convention uses well known

ports for particular types of traffic, a "stateless"

packet filter can distinguish between, and thus

control, those types of traffic (such as web browsing,

remote printing, email transmission, file transfer),

unless the machines on each side of the packet filter

are both using the same non-standard ports. Packet

filtering firewalls work mainly on the first three

layers of the OSI reference model, which means most

of the work is done between the network and physical

layers, with a little bit of peeking into the transport

layer to figure out source and destination port

numbers.
[9]

 When a packet originates from the sender

and filters through a firewall, the device checks for

matches to any of the packet filtering rules that are

configured in the firewall and drops or rejects the

packet accordingly. When the packet passes through

the firewall, it filters the packet on a protocol/port

number basis (GSS). For example, if a rule in the

firewall exists to block telnet access, then the firewall

will block the TCP protocol for port number 23. Two

imperative issues are safety and performance. When

a new connection is established, the firewall

router scans the con-nection and forwards these

packet to the host after confirming that the

http://en.wikipedia.org/wiki/Digital_Equipment_Corporation
http://en.wikipedia.org/wiki/Digital_Equipment_Corporation
http://en.wikipedia.org/wiki/Digital_Equipment_Corporation
http://en.wikipedia.org/wiki/Bell_Labs
http://en.wikipedia.org/wiki/William_Cheswick
http://en.wikipedia.org/wiki/Steven_M._Bellovin
http://en.wikipedia.org/wiki/Steven_M._Bellovin
http://en.wikipedia.org/wiki/Steven_M._Bellovin
http://en.wikipedia.org/wiki/IPv4_Header
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/TCP_and_UDP_port
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Firewall_(computing)#cite_note-9

R. Indu Praveena et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 4), June 2014, pp.81-87

 www.ijera.com 83 | P a g e

connection is secure. Because firewall routers focus

on the application layer of the OSI model, they

must reassemble in-coming packet to restore the

original connection and examine them through

different application parsers to guarantee a secure

set-up environment. For occurrence, believe a user

search for information on web pages and then

tries to download a com-pressed file beginning a

web server. In this case, the firewall router might

initially deny some acquaintances from the

firewall base on the target’s IP address and the

connection port. Then, the fire-wall router would

monitor the content of the web pages to prevent

the user from accessing any page that connects to

malware links or inapt pleased, based on content

filters. When the user wants to download a

compressed file, to ensure that the file is not

infected, the firewall router be obliged to

decompress this file and check it using anti-virus

programs. In summary, firewall routers require

several time-consuming stepladder to provide a

secure association.

III. PRESENT SYSTEM
There are many algorithms and accompanying

hardware accelerators for fast pattern matching.

One of the typical algorithms is the automation

approach. This approach is based on Aho and

Corasick’s algorithm (AC), which introduces a

linear-time algorithm for multi-pattern search with

a large finite-state ma-chine. Its performance is

not affected by the size of a given pattern set

(the sum of all pattern lengths). In contrast,

heuristic approaches are based on the Boyer-Moore

algorithm, which was introduced in 1977. Its key

feature is the shift value, which shifts the

algorithm’s search window for multiple characters

when it encounters a mismatch. However, attacks

such as spam, spyware, worms, viruses, and phishing

target the application layer rather than the network

layer. Therefore, traditional firewalls no longer

provide enough protection. Many solutions, such as

virus scanners, spam-mail filters, instant messaging

protectors, network shields, content filters, and peer-

to-peer protectors, have been effectively

implemented. Initially, these solutions were

implemented at the end-user side but tend to be

merged into routers/firewalls to provide multi-layered

protection. As a result, these routers stop threats on

the network edge and keep them out of corporate

networks.The search window is a range of text

exactly fetched by pattern matching algorithms for

each examination. This algorithm performs better

because it makes fewer comparisons than the

naïve pattern-matching algorithm. At runtime, the

Boyer-Moore algorithm uses a pattern pointer to

locate a candidate position by assuming that a

desired pattern exists at this position. The

algorithm then shifts its search window to the right of

this pattern. By default, desired patterns can exist in

any position of a text; therefore, all positions in a text

are candidate positions and must be examined. If the

string of search windows does not appear in the

pattern, the algorithm can shift the pattern pointer

to the right and skip multiple characters from the

candidate position to the end of the pattern without

making comparisons. Based on this concept, Wu and

Manber (WM) modified the Boyer-Moore algorithm

to search for multiple patterns. However, the

performance of both of these algorithms is

bounded by the pattern length. By default, desired

patterns can exist in any position of a text; therefore,

all positions in a text are candidate positions and

must be examined. If the string of search windows

does not appear in the pattern, the algorithm can shift

the pattern pointer to the right and skip multiple

characters from the candidate position to the end of

the pattern without making comparisons. Based on

this concept, Wu and Manber (WM) [18] modified

the Boyer-Moore algorithm to search for multiple

patterns. The WM algorithm is widely used in many

applications, including Unix tools such as agrep and

glimpse. However, the performance of both of these

algorithms is bounded by the pattern length. Its

performance is not affected by the size of a given

pattern set (the sum of all pattern lengths), but it

requires a significant amount of memory due to state

explosion. Experiments [17] have shown that the

suboptimal AC algorithm requires 84.15 MB memory

to represent Snort’s rule set (4219 rules, as of

December 2005). Even an Intel IXP2855 network

processor (512 kB on-chip memory) must store such

a pattern set in off-chip memory. Therefore, the

memory hierarchy is the main factor in performance.

Many previous studies have tried to lower memory

requirements. In 2005, Lin Tan introduced a bit-split

method by splitting an 8-bit character into four 2-bit

characters to construct the automaton. Their state

machines are smaller than the original, and they have

fewer fan-out states for each transaction. However,

the bit-split method reads several memory blocks in

parallel when matching patterns. Thus, it can only be

implemented by on-chip memory because of its high

memory read port requirements. Piti Piyachon and

Yan Luo extended this concept to the Intel IXP2855

network processor. For increasingly large pattern

sets, an IBM team implemented an optimized AC

algorithm on the cell processor, and they discovered

that the memory gap was the bottleneck. As a result,

they modified the algorithm and used DMA to reduce

the effect on the memory system. In contrast,

heuristic approaches are based on the Boyer-Moore

algorithm, which was introduced in 1977. Its key

feature is the shift value, which shifts the algorithm’s

search window for multiple characters when it

encounters a mismatch. The search window is a range

R. Indu Praveena et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 4), June 2014, pp.81-87

 www.ijera.com 84 | P a g e

of text exactly fetched by pattern matching

algorithms for each examination. This algorithm

performs better because it makes fewer comparisons

than the naïve pattern-matching algorithm.

IV. VIRUS DETECTION PROCESSOR
Focus on algorithms and have even

developed for specialized circuits to increase the

scanning speed. However, these works have not

considered the interactions between algorithms and

memory hierarchy. Because the number of attacks

is increasing, pattern-matching processors require

external memory to support an unlimited pattern set.

This method makes the memory systemthe

bottleneck. However,when the pattern set is already

intractably large, a perfect solution is unattainable.

Both engines have individual memories for

storing significant information. For cost reasons, only

a small amount of significant information regarding

the patterns can be stored in the filteringEngine’s on-

chip memory. In this case, we use a 32-kB onchip

memory for the ClamAV virus database, which

contained more than 30 000 virus codes and localized

most of the computing inside the chip.Conversely,

the exact-matching engine not only stores the

entire pattern in external memory but also

provides information to speed up the matching

process. Our exactmatching engine is space-

efficient and requires only four times the memory

space of the original size pattern set. The size of a

pattern set is the sum of the pattern length for each

pattern in the given pattern set; in other words,

it is the minimum size of the memory required

to store the pattern set for the exact-matching

engine. In this case, 8 MB of offchip memory was

required for the ClamAV virus database (2 MB). The

filtering engine screens Impossible matches by

consulting two TCAM lookup tables (named no-

plane and yes-plane), which are used to perform two

steps of the on-chip data-scanning as shown in Fig1.

Only important filtering signatures and skip data are

stored on the chip. In order to reduce the on-chip

memory, the filtering engine operates only on the

fixed amount of the memory, including a 16-KB

TCAM and a 8.5-KB SRAM.These filtering data

are extracted from the entire virus database by

pre-processing the 30K virus patterns released

from the ClamAV. The operation principle of

the virus-detection processor. The filtering engine

screens impossible matches by consulting two

TCAM lookup tables (named no-plane and yes-

plane), which are used to perform two steps of the

on-chip data-scanning. The proposed exact-matching

engine also supports data pre fetching and caching

techniques to hide the access latency of the off-chip

memory by allocating its data structure well. The

other modules include a text buffer and a text pump

that pre-fetches text in streaming method to overlap

the matching progress and text reading. A load/store

interface was used to support bandwidth sharing.

This proposed architecture has six steps shown in

Fig.2 for finding patterns. Initially, a pattern pointer

is assigned to point to the start of the given text at the

filtering stage. Suppose the pattern matching

processor examines the text from left to right. The

filtering engine fetches a piece of text from the text

buffer. If the position indicated by the pattern pointer

is not a candidate position, then the filtering engine

skips this piece of text and shifts the pattern pointer

right multiple characters to continue to check the next

position.

Fig 1 Virus Detection Processor Architecture

Fig 2 Two-phase pattern execution flow

Conversely, the exact-matching engine not only

stores the entire pattern in external memory but also

provides information to speed up the matching

process. Our exact-matching engine is space-efficient

and requires only four times the memory space of the

original size pattern set. The size of a pattern set is

the sum of the pattern length for each pattern in the

given pattern set; in other words, it is the minimum

size of the memory required to store the pattern set

for the exact-matching engine. In this case, 8 MB of

off-chip memory was required for the Clam AV virus

database (2 MB). The proposed exact-matching

engine also supports data prefetching and caching

techniques to hide the access latency of the off-chip

memory by allocating its data structure well. The

other modules include a text buffer and a text pump

that prefetches text in streaming method to overlap

the matching progress and text reading. A load/store

interface was used to support bandwidth sharing.

R. Indu Praveena et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 4), June 2014, pp.81-87

 www.ijera.com 85 | P a g e

4.1 General Process

4.1.1 No-Plane Structure

The filtering engine screens impossible matches

by consulting two TCAM lookup tables (named

no-plane and yes-plane). which are used to perform

two steps of the on chip data-scanning to obtain a

fast shift table. which indicates the impossible

matching patterns (so-called noplane). By

comparing the input datum with the no-plane

TCAM from the least significant bit (LSB), the

engine first looks up the shift table to perform a

quick shift of impossible bytes until locating a

possible match. If the input datum is matched with an

entry of no-plane, the input string will be skipped

according to the shift count stored in the shift

SRAM

4.1.2 Yes plane Structure

When the comparison of no-plane is missed

or if the corresponding shift-count is zero, the

filtering engine will enter the second step of

virus detection, as shown in Fig. 1(d). Then we

further look up another signature table (called the

yes-plane) to eliminate any false positives by

ensuring that the prefix has the same signature. The

filtering engine will skip the input datum if it is

mismatched with the data of the yes-plane. If a

possible match is still not ruled out, then the

exactly-matching engine performs suffix matching

by making comparisons with a suffix tree stored in

off-chip memory, which can hold a large number

of virus patterns.The yes-plane TCAM to reduce

more exact comparisons. The filtering engine will

skip the input datum if it is mismatched with the

data of the yes-plane. If a possible match is still

not ruled out, then the exactlymatching engine

performs suffix matching by making comparisons

with a suffix tree stored in off-chip memory,

which can hold a large number of virus patterns.

The offchip memory needs roughly 8MB to store

the entire 2MB virus patterns of the ClamAV .Our

idea is to merge these two single-port TCAMs into a

single rectangular dual-port TCAM and concurrently

match with the whole prefix. To achieve this goal we

need a dual-port TCAM and two SRAMs as shown in

the right part of FIG, with a division line inserted in

the dual-port TCAM array to separate the no-plane

entries and the yes-plane entries. With the

proposed dual-port TCAM, the ternary cells

storing “X” terms can be minimized, and

consequently both the total memory capacity and the

power consumption are reduced It includes two

single-port TCAMs and two SRAMs. One TCAM

serves as the no-plane.

4.2 Wu-Manber Algorithm

The Wu-Manber algorithm is a high-

performance, multipattern matching algorithm

based on the Boyer-Moore algorithm. It builds

three tables in the pre processing stage: a shift table,

a hash table and a prefix table. The Wu-Manber

algorithm is an exact-matching algorithm, but its shift

table is an efficient filtering structure. The shift table

is an extension of the bad-character concept in the

Boyer-Moore algorithm, but they are not identical.

The fig 3 shows Wu-Manber Algorithm match flow.

Fig 3 Matching flow

4.3 Bloom Filter Algorithm

A Bloom filter is a space-efficient data

structure used to test whether an element exists in a

given set. This algorithm is composed of different

hash functions and a long vector of bits. Initially, all

bits are set to 0 at the pre processing stage. To add an

element, the Bloom filter hashes the element by these

hash functions and gets positions of its vector.

The Bloom filter then sets the bits at these positions

to 1. The value of a vector that only contains an

element is called the signature of an element. To

check the membership of a particular element, the

Bloom filter hashes this element by the same hash

functions at run time, and it also generates positions

of the vector. The fig 4 shows bloom filter algorithm

match flow.

Fig 4 Matching flow

The filter only hashes all of the pattern prefixes

at the preprocessing stage. Multiple patterns setting

R. Indu Praveena et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 4), June 2014, pp.81-87

 www.ijera.com 86 | P a g e

the same position of the bit vector are allowed. The

arrows indicate the candidate positions. The gray bars

represent the search window that the Bloom filter

actually fetches for comparison. Both the candidate

position and search window are aligned together.

Thus, the Bloom filter scans and compares patterns

from the head rather than the tail, like the Wu-

Manber algorithm. In step 1 , the filter hashes “He”

and mismatches the signature with the bit vector. The

filter then shifts right 1 character and finds the next

candidate position. For the search window “ee”, the

Bloom filter matches the signature and then causes a

false alarm to perform an exact-matching in steps 2

and 3. The filter then returns to the filtering stage and

shifts one character to the right in step 4, which

launches a true alarm for the pattern “ever”. Finally,

the Bloom filter filters the rest of text and finds

nothing. The Bloom filter then sets the bits at these

positions to 1. The value of a vector that only

contains an element is called the signature of an

element. To check the membership of a particular

element, the Bloom filter hashes this element by the

same hash functions at run time, and it also generates

positions of the vector. If all of these bits are set to 1,

this query is claimed to be positive, otherwise it is

claimed to be negative. The output of the Bloom

filter can be a false positive but never a false

negative. Therefore, some pattern matching

algorithms based on the Bloom filter must operate

with an extra exact-matching algorithm. However,

the Bloom filter still features the following

advantages: 1) it is a space-efficient data structure; 2)

the computing time of the Bloom filter is scaled

linearly with the number of patterns; and 3) the

Bloom filter is independent.

4.4 Shift-Signature Algorithm

The proposed algorithm re-encodes the shift

table to merge the signature table into a new table

named the shift-signature table. The shift-signature

table has the same size as the original shift table, as

its width and length are the same seeing that the

original change counter. There are two field, S-

flag with carry, in the shift signature table. The

carry meadow has two types of data: a shift value and

a signature. These two data types are used by two

different algorithms. Thus, the S-flag is worn to

designate the data type of a carry. The filtering steam

engine can then filter the text using a different

algorithm at the same time as providing a higher

filter rate. The system used to merge these two

tables is described as follows. First, the algorithm

generates two tables, a alter table and signature

table, at the pre processing period. The age bracket

of the shift table is the same as in the Wu-Manber

algorithm. The S-flag is a1-bit field used to indicate

the data type of the bring Two data types, shift

value or signature, are defined for a carry. The size

and breadth of the shift signature counter are the

same as those of the original shift table. To join

these two table the algorithm maps both entry in

the shift table and autograph table onto the shift-

signature table. For the non-zero shift values, the

S-flags are set, and their original shift values are

cut out at 1-bit to fit their carries. Conversely, for

the zero change values, their Sflags are clear, and

their carries are used to store their signatures. In this

method, all of the entries in the shift-signature

table contribute to the filtering rate at run time.

Because of the address collision of badcharacters,

most entries contain less than half of the

maximum shift distance for a large pattern set.

Therefore, although this method sacrifices the

maximum shift distance, the filter rate is not reduced

but rather improved. The fig 5 shows Shift-Signature

Algorithm match flow.

Fig 5 Matching flow

V. OUTPUTS
5.1 NO VIRUS CASE

Fig 6 Proposed virus detection processor

R. Indu Praveena et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 4), June 2014, pp.81-87

 www.ijera.com 87 | P a g e

5.2 VIRUS CASE

Fig 7 Proposed virus detection processor

5.3 SYSNYHESIS WNDOW

Fig 8 Proposed virus detection processor

synthesization

VI. CONCLUSION
In this paper we describe a novel architecture

for prototype matching virus detection processor

for network intrusion unearthing system. The virus

detection -processor is RAM-based aim which be

used to store the additional bug model to hit upon

the virus patterns .the dual port morsel CAM be

dexterous pattern matching train is accomplished

of detect added bug patterns . Since the pattern are

mechanical hooked on the co-processor with

software, the planning can continue to exist used to

implement design in FPGA as fighting vigorous

as ASIC We have shown with the intention of our

blueprint filter survive talented of yield ing

concert that surpass the most recent FPGA

implementations while enabling the users to course it

with out having to regenerate moreover reconfigure

the hardware. Such quick configuration may become

critical, as the rate of coming out of new attack

increase. Many previous designs include claimed to

make available high performance, but the memory

gap created by using external memory decrease

recital because of the increasing size of virus

databases. Furthermore, imperfect resources restrict

the expediency of these algorithms used for

embedded network security systems. Two-phase

heuristic algorithms are a solution with a tradeoff

between performances and cost due to an efficient

filter table accessible in internal recollection

however, their performance is without problems

threatened by malicious attacks. This work analyzes

two scenarios of malevolent attacks and provides two

methods. The design of the adjustable division line

provides high flexibility for updating virus databases.

REFERENCES
[1] TSMC 0.13µm Logic 1P8M Salicide CU

FSG 1.2V/3.3V Process Documents,

Taiwan Semiconductor Manufacturing Co.,

Ltd..

[2] F. Yu, R. H. Katz, and T. V. Lakshman,

“Gigabit rate packet pattern matching

using TCAM,” in Proc. 12th IEEE Int.

Conf. Netw. Protocols, 2004, pp. 174–

178.intrusion detection system,” ACMTrans.

Embed. Comput. Syst., vol. 3, pp. 614–633,

2004.

[3] D. P. Scarpazza, O. Villa, and F. Petrini,

“High-speed string searching against large

dictionaries on the Cell/B.E. processor,”

in Proc. IEEE Int. Symp. Parallel

Distrib. Process., 2008, pp. 1–8.

[4] S. Dharmapurikar, P. Krishnamurthy, and

T. S. Sproull, “Deep packet inspection

using parallel bloom filters,” IEEE

Micro, vol. 24, no. 1, pp.52–61, Jan. 2004.

[5] L. Tan and T. Sherwood, “A high

throughput string matching architecture for

intrusion detection and prevention,”in

Proc. 32 nd Annu. Int. Symp. Comput.

Arch., 2005, pp. 112–122.

[6] Chieh-Jen Cheng, Chao-Ching Wang, Wei-

Chun Ku, Tien-Fu Chen , and Jinn-Shyan

Wang, “Scalable High-Performance Virus

Detection Processor Against a Large

Pattern Set for Embedded Network

Security” Commun. VOL. 20, NO. 5,

MAY 2012.

[7] V. Aho and M. J. Corasick, “Efficient

string matching: An aid to bibliographic

search,” Commun. ACM, vol. 18, pp.

333–340, 1975.

[8] O. Villa, D. P. Scarpazza, and F. Petrini, “

Accelerating real-time string searching with

multicore processors,” Computer, vol. 41,

pp. 42–50,2008.

[9] R.-T. Liu, N.-F. Huang, C.-N. Kao, and C.-

H. Chen, “A fast string matching algorithm

for network processor-based intrusion

detection system,” ACMTrans. Embed.

Comput. Syst., vol. 3, pp. 614–633, 2004.

[10] Micron Technology, Inc., Boise, ID, “256

MB DDR2 SDRAM datasheet,” 2003.

